skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sethumadhavan, Simha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Cryptographic (crypto) algorithms are the essential ingredients of all secure systems: crypto hash functions and encryption algorithms, for example, can guarantee properties such as integrity and confidentiality. Developers, however, can misuse the application programming interfaces (API) of such algorithms by using constant keys and weak passwords. This paper presents CRYLOGGER, the first open-source tool to detect crypto misuses dynamically. CRYLOGGER logs the parameters that are passed to the crypto APIs during the execution and checks their legitimacy offline by using a list of crypto rules. We compare CRYLOGGER with CryptoGuard, one of the most effective static tools to detect crypto misuses. We show that our tool complements the results of CryptoGuard, making the case for combining static and dynamic approaches. We analyze 1780 popular Android apps downloaded from the Google Play Store to show that CRYLOGGER can detect crypto misuses on thousands of apps dynamically and automatically. We reverse-engineer 28 Android apps and confirm the issues flagged by CRYLOGGER. We also disclose the most critical vulnerabilities to app developers and collect their feedback. 
    more » « less
  2. Identifying similar code in software systems can assist many software engineering tasks such as program understanding and software refactoring. While most approaches focus on identifying code that looks alike, some techniques aim at detecting code that functions alike. Detecting these functional clones - code that functions alike - in object oriented languages remains an open question because of the difficulty in exposing and comparing programs' functionality effectively. We propose a novel technique, In-Vivo Clone Detection, that detects functional clones in arbitrary programs by identifying and mining their inputs and outputs. The key insight is to use existing workloads to execute programs and then measure functional similarities between programs based on their inputs and outputs, which mitigates the problems in object oriented languages reported by prior work. We implement such technique in our system, HitoshiIO, which is open source and freely available. Our experimental results show that HitoshiIO detects more than 800 functional clones across a corpus of 118 projects. In a random sample of the detected clones, HitoshiIO achieves 68+% true positive rate with only 15% false positive rate. 
    more » « less
  3. Detecting “similar code” is useful for many software engineering tasks. Current tools can help detect code with statically similar syntactic and–or semantic features (code clones) and with dynamically similar functional input/output (simions). Unfortunately, some code fragments that behave similarly at the finer granularity of their execution traces may be ignored. In this paper, we propose the term “code relatives” to refer to code with similar execution behavior. We define code relatives and then present DyCLINK, our approach to detecting code relatives within and across codebases. DyCLINK records instruction-level traces from sample executions, organizes the traces into instruction-level dynamic dependence graphs, and employs our specialized subgraph matching algorithm to efficiently compare the executions of candidate code relatives. In our experiments, DyCLINK analyzed 422+ million prospective subgraph matches in only 43 minutes. We compared DyCLINK to one static code clone detector from the community and to our implementation of a dynamic simion detector. The results show that DyCLINK effectively detects code relatives with a reasonable analysis time. 
    more » « less